Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Auton Neurosci ; 240: 102984, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526354

RESUMO

Our understanding of central nervous system regulation of the set-point of arterial pressure remains incomplete, especially in conditions of hypertension. The ventrolateral periaqueductal gray (vlPAG) is of particular interest given that its acute activation induces hypotension and sympatho-inhibition in anaesthetised, normotensive animals, and recent preliminary studies have shown that vlPAG stimulation can reduce blood pressure in refractory hypertensive patients. To assist our mechanistic understanding, we investigated whether electrical stimulation of the vlPAG had depressor actions in a model of neurogenic hypertension, the spontaneously hypertensive (SH) rat. We found that electrical stimulation of the lateral and vlPAG (2-6 V, 20-40 Hz, 0.18-0.2 ms pulse width) decreased arterial pressure (-19 ± 4 mm Hg, n = 8) and heart rate (median - 18 bpm) in anaesthetised SH rats. In contrast, in conscious freely-moving SH rats fitted with blood pressure telemetry, stimulation of this same region produced failed to evoked a hypotensive response (n = 13; either no change, n = 9; or an increase in arterial pressure of 23 ± 4 mm Hg, n = 4). The hypotensive action of the vlPAG observed in anaesthetised animals has been attributed to inhibition of pre-sympathetic neurones originating in the rostral ventrolateral medulla. We therefore used an un-anaesthetised, decerebrate SH rat preparation to investigate whether activation of vlPAG neurons produced sympatho-inhibition that might be below the threshold at which a peripheral vascular response could be observed. Only sympatho-excitatory responses to electrical and excitatory amino acid microinjections were observed, and these were evoked from both the dorsal and ventral PAG; no responses were evoked from the vlPAG. We conclude that the vlPAG is not a reliable antihypertensive locus in the awake SH rat. We discuss the potential importance of the state-dependency of the hypotensive response that can be evoked from the vlPAG, which has important implications for translating to humans.


Assuntos
Hipertensão , Hipotensão , Animais , Pressão Arterial , Pressão Sanguínea/fisiologia , Humanos , Hipertensão/metabolismo , Microinjeções , Substância Cinzenta Periaquedutal/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley
2.
Exp Physiol ; 103(3): 419-428, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29215757

RESUMO

NEW FINDINGS: What is the central question of this study? Does chronic reduction of neuronally generated nitric oxide in the hypothalamic paraventricular nucleus affect the set-point regulation of blood pressure and sympathetic activity destined to the kidneys? What is the main finding and its importance? Within the hypothalamic paraventricular nucleus, nitric oxide generated by neuronal nitric oxide synthase plays a major constitutive role in suppressing long term the levels of both ongoing renal sympathetic activity and arterial pressure in conscious Wistar rats. This finding unequivocally demonstrates a mechanism by which the diencephalon exerts a tonic influence on sympathetic discharge to the kidney and may provide the basis for both blood volume and osmolality homeostasis. ABSTRACT: The paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in cardiovascular and neuroendocrine regulation. Application of nitric oxide donors to the PVN stimulates GABAergic transmission, and may suppress sympathetic nerve activity (SNA) to lower arterial pressure. However, the role of endogenous nitric oxide within the PVN in regulating renal SNA chronically remains to be established in conscious animals. To address this, we used our previously established lentiviral vectors to knock down neuronal nitric oxide synthase (nNOS) selectively in the PVN of conscious Wistar rats. Blood pressure and renal SNA were monitored simultaneously and continuously for 21 days (n = 14) using radio-telemetry. Renal SNA was normalized to maximal evoked discharge and expressed as a percentage change from baseline. The PVN was microinjected bilaterally with a neurone-specific tetracycline-controllable lentiviral vector, expressing a short hairpin miRNA30 interference system targeting nNOS (n = 7) or expressing a mis-sense as control (n = 7). Recordings continued for a further 18 days. The vectors also expressed green fluorescent protein, and successful expression in the PVN and nNOS knockdown were confirmed histologically post hoc. Knockdown of nNOS expression in the PVN resulted in a sustained increase in blood pressure (from 95 ± 2 to 104 ± 3 mmHg, P < 0.05), with robust concurrent sustained activation of renal SNA (>70%, P < 0.05). The study reveals a major role for nNOS-derived nitric oxide within the PVN in chronic set-point regulation of cardiovascular autonomic activity in the conscious, normotensive rat.


Assuntos
Pressão Sanguínea/fisiologia , Rim/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/enzimologia , Sistema Nervoso Simpático/metabolismo , Animais , Masculino , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/genética , RNA Interferente Pequeno , Ratos , Ratos Wistar
3.
Acta Physiol (Oxf) ; 219(1): 274-287, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27172364

RESUMO

The brain is an exceptionally energetically demanding organ with little metabolic reserve, and multiple systems operate to protect and preserve the brain blood supply. But how does the brain sense its own perfusion? In this review, we discuss how the brain may harness the cardiovascular system to counter threats to cerebral perfusion sensed via intracranial pressure (ICP), cerebral oxygenation and ischaemia. Since the work of Cushing over 100 years ago, the existence of brain baroreceptors capable of eliciting increases in sympathetic outflow and blood pressure has been hypothesized. In the clinic, this response has generally been thought to occur only in extremis, to perfuse the severely ischaemic brain as cerebral autoregulation fails. We review evidence that pressor responses may also occur with smaller, physiologically relevant increases in ICP. The incoming brain oxygen supply is closely monitored by the carotid chemoreceptors; however, hypoxia and other markers of ischaemia are also sensed intrinsically by astrocytes or other support cells within brain tissue itself and elicit reactive hyperaemia. Recent studies suggest that astrocytic oxygen signalling within the brainstem may directly affect sympathetic nerve activity and blood pressure. We speculate that local cerebral oxygen tension is a major determinant of the mean level of arterial pressure and discuss recent evidence that this may be the case. We conclude that intrinsic intra- and extra-cranial mechanisms sense and integrate information about hypoxia/ischaemia and ICP and play a major role in determining the long-term level of sympathetic outflow and arterial pressure, to optimize cerebral perfusion.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Pressão Intracraniana/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Pressão Sanguínea/fisiologia , Hemodinâmica/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...